Determination of temperature by remote sensing

DOI: 10.3369/tethys.2010.7.06

Tethys no. 7 pp.: 67 - 74

Abstract

The knowledge of land surface temperature (LST) is of great importance, because it helps us to understand processes such as energy exchange between surface and atmosphere, water requirements in agricultural soils, control and prevention of fires and the evolution of climate change. Also, we need to try to know its value with enough accuracy. Two important factors are taken into account: the surrounding environmental conditions on the surface and its own emissivity. When performing a measurement of the LST, two types of corrections should be applied: first, the atmospheric correction in order to eliminate its contribution to the satellite measurements and a second one due to the effect of surface emissivity when the measurement is done both from satellite and in the field. This work presents an exhaustive review of the methodology currently used to perform both corrections. In the case of surface emissivity, the techniques known to determine it and the methodologies used for its correction will be shown. For atmospheric correction, two widely contrasted methods are exposed: the single-channel method and the differential absorption of the split-window method, which avoid the need for radiosoundings, in order to correct the radiative effect of the atmosphere. The knowledge of the methodology shown can be of help for any study of the LST, either from satellite or on ground level.

References

  • - Becker, F. and Li, Z.-L., 1995: Surfaces temperature and emissivity at various scales: Definition, measurement and related problems, Int J Remote Sens, 12, 225–253.
  • - Berk, A., Anderson, G. P., Acharya, P. K., Chetwynd, J. H., Bernstein, L. S., and Shettle, E. P., 1999: MODTRAN 4 user’s manual, MA: Air Force Research Laboratory, Space Vehicles Directorate, Air Force Material Command, Hascom AFB, 95.
  • - Buettner, K. J. and Kern, C. D., 1965: The determination of infrared emissivities of terrestrial surfaces, J Geophys Res, 70, 1324–1337, doi: 10.1029/JZ070i006p01329.
  • - Caselles, V., Coll, C., and Sobrino, J. A., 1991: La Teledetección en el seguimiento de los fenómenos naturales, Servicio de publicaciones de la Universitat de Valencia, València, 95-140, 149-182.
  • - Coll, C. and Caselles, V., 1997: A split-window algorithm for land surface temperature from adnvanced very high resolution radiometer data: Validation and algorithm comparison, J Geophys Res, 102, 1697–16, 713, doi: 10.1029/97JD00929.
  • - Coll, C., Valor, E., Caselles, V., and Niclòs, R., 2003: Adjusted Normalized Emissivity Method for surface temperature and emissivity retrieval from optical and thermal infrared remote sensing data, J Geophys Res, 108, 12.1–12.14, doi: 10.1029/2003JD003688.
  • - Dana, R. W., 1969: Measurements of 8-14 microm emissivity of igneous rocks and mineral surfaces, NASA science Report NSG- 632, Goddard Space Flight Center, Greenbelt, Maryland (USA).
  • - François, C. and Ottlé, C., 1996: Atmospheric corrections in the thermal infrared: Global and water vapor dependent splitwindow algorithms- Applications to ATSR and AVHRR data, IEEE Trans Geosci Remote Sensing, 34, 457–469.
  • - French, A. N., Norman, J. M., and Anderson, M. C., 2003: A simple and fast atmospheric correction for spaceborne remote sensing of surface temperature, IEEE Trans Geosci Remote Sensing, 87, 326–333, doi: 10.1016/j.rse.2003.08.001.
  • - Galve, J. M., Coll, C., Caselles, V., and Valor, E., 2008: An atmospheric radiosounding database for generating Land Surface Temperature algorithm, Remote Sens Environ, 46, 1547–1557, doi: 10.1109/TGRS.2008.916084.
  • - Gillespie, A. R., 1986: Lithologic mapping of silicate rocks using TIMS, in the TIMS data user’s workshop, Publ. Pasadena Calif, 29-44.
  • - Gillespie, A. R., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., and Kahle, B., 1998: A Temperature and Emissivity Separation algorithm for Advanced Spaceborne Thermal Emission and Reflection radiometer ASTER images, IEEE Trans Geosci Remote Sensing, 36, 1113–1126, doi: 10.1109/36.700995.
  • - McMillin, L. M., 1975: Estimation of sea surface temperatures from two infrared window measurements with different absorption, J Geophys Res, 36, 5113–5117, doi: 10.1029/JC080i036p05113.
  • - Niclòs, R., Caselles, V., Coll, C., and Valor, E., 2007: Determination of sea surface temperature at large observation angles using an angular and emissivity-dependent split-window equation, Remote Sens Environ, 111, 107–121, doi: 10.1016/j.rse.2007.03.014.
  • - Prata, A. J., 1993: Land surface temperatures derived from the advanced very high resolution radiometer and the along track scanning radiometer. Theory, J Geophys Res, 98 (D9), 689–16, 702, doi: 10.1029/93JD01206.
  • - Prata, A. J., 2002: Land surface temperatures measurements from space: AATSR algorithm theoretical basis document, CSIRO Atmos. Res., Aspendale, Australia, tech. Rep. 34.
  • - Rouse, J.W., Haas, R. H., Schell, J. A., Deering, D.W., and Harlan, L. C., 1974: Monitoring the vernal advancement of retrogradation of natural vegetation, NASA/GSFC, Type III, Final Report, Greenbelt, MD, p 371.
  • - Rubio, E., Caselles, V., and Badenas, C., 1997: Emissivity measurements of several soils and vegetation types in the 8-14 μm wave band: analysis of two field methods, Remote Sens Environ, 59, 490–521, doi: 10.1016/S0034-4257(96)00123-X.
  • - Schmugge, T. J., Becker, F., and Li, Z.-L., 1991: Spectral emissivity variations observed in airbone surface temperature measurements, Remote Sens Environ, 35, 95–104, doi: 10.1016/0034-4257(91)90003-O.
  • - Valor, E. and Caselles, V., 1996: Mapping land surface emissivity from NDVI: application to european, african and south American areas, Remote Sens Environ, 57, 167–184, doi: 10.1016/0034-4257(96)00039-9.
  • - van de Griend, A. A. and Owe, M., 1993: On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces, Int J Remote Sens, 14, 1119–1131, doi: 10.1080/01431169308904400.
  • - Wan, Z., 1999: MODIS land surface temperature. Algorithm theorethical basis document, NAS5-31370.


Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 Unported License


Indexed in Scopus, Thomson-Reuters Emerging Sources Citation Index (ESCI), Scientific Commons, Latindex, Google Scholar, DOAJ, ICYT (CSIC)

Partially funded through grants CGL2007-29820-E/CLI, CGL2008-02804-E/, CGL2009-07417-E and CGL2011-14046-E of the Spanish Ministry of Science and Innovation