Atmospheric surface layer in a coastal environment: measurements in a 100 m tower (El Arenosillo)

DOI: 10.3369/tethys.2012.9.05

Tethys no. 9 pp.: 43 - 51

Abstract

In the southwest of the Iberian Peninsula there is a 100 m high tower, equipped with meteorological instrumentation at the 10, 50 and 100 m levels. The first observations of temperature, relative humidity, wind (direction and speed) and pressure were recorded in 2009. From the original data with a 10-minute resolution, hourly values were calculated applying quality criteria. Using these values, we have obtained various statistical parameters such as percentiles, maxima and minima. The wind regime has also been analyzed. The first 100 m of the atmosphere show an increase in temperature with height, which could be associated with the frequent occurrence of stably stratified conditions. By contrast, the relative humidity has a slight trend to decrease or maintain similar values. As expected, pressure values show a trend to decrease with height. Wind data show flows with similar directions at the three heights and an increase in wind speed. The daily evolution of the atmospheric stratification stability has been estimated using the potential temperature and its difference between levels. As a daily average, in summer the day can be divided into 12 hours of vertical mixing, and thermal inversion for the other 12. In the colder months, 15 hours of stably stratified stability were found. Finally, we have analyzed specific periods, which represent the typical meteorological scenarios of this region, governed by both synoptic and mesoscale processes. In these cases, the stability of atmospheric stratification has been estimated using potential temperature and the Bulk Richardson Number. Under breeze or NE flow conditions, we obtain a daily pattern of atmospheric stratification stability strongly influenced by daytime heating and nighttime cooling, similar to the behavior shown by the planetary boundary layer. However, under SW-W or NW flows, the daily evolution of the potential temperature difference and the Bulk Richardson Number does not present a clear daily cycle, which could be attributed to the influence of the marine boundary layer.

References

  • - Adame, J. A., Bolívar, J. P., and De la Morena, B. A., 2010a: Surface ozone measurements in the southwest of the Iberian Peninsula (Huelva, Spain), Environ Sci Pollut Res, 17, 355–368, doi:10.1007/s11356-008-0098-9.
  • - Adame, J. A., Serrano, E., Bolívar, J. P., and De la Morena, B. A., 2010b: On the Tropospheric Ozone Variations in a Coastal Area of Southwestern Europe under a Mesoscale Circulation, J Appl Meteor Climatol, 12, 748–759, doi:10.1175/2009JAMC2097.1.
  • - Antón, M., Vilaplana, J. M., Kroon, M., Serrano, A., Parias, M., Cancillo, M. L., and De la Morena, B. A., 2010: The empirically corrected EP-TOMS total ozone data against Brewer measurements at El Arenosillo (Southwestern Spain), IEEE Trans Geosci Remote Sensing, 48, 3039-3045, doi:10.1109/TGRS.2010.2043257.
  • - Arya, S. P., 2001: Introduction to micrometeorology, Academy Press, 420 pp.
  • - Crespí, S., 2002: Altura de la capa de mezcla: Caracterización experimental y aplicación de un modelo meteorológico para el estudio de su evolución diurna, Tesis Doctoral, Universidad Complutense de Madrid, 237 pp.
  • - Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M. R., Infante, C., Buenestado, P., Espinalt, A., Joergensen, H. E., Rees, J. M., Vilà, J., Redondo, J. M., Cantalapiedra, I. R., and Conangla, L., 2000: Stable atmospheric boundary layer experiment in Spain (SABLES 98): A report, Bound Layer Meteor, 96, 337–370, doi:10.1023/A:1002609509707.
  • - Garratt, J. R., 1994: The Atmospheric Boundary Layer, Cambridge University Press, 336 pp.
  • - Grossi, C., Vargas, A., Arnold, D., López-Coto, I., Bolívar, J. P., Adame, J. A., and De la Morena, B. A., 2010: Set-up of a Radon Monitoring Station in a 100 m Height Tower in the Southern Coast of Spain, 6th Conference on Protection Against Radon at Home and at Work, Praga (Republica Checa), 13-17/IX/2010, book of Abstracts, 83, ISBN 978-80-01-04603-6.
  • - Grossi, C., Arnold, D., Adame, J. A., López-Coto, I., Bolívar, J. P., De la Morena, B. A., and Vargas, A., 2012: Atmospheric 222Rn concentration and source term at El Arenosillo 100 m meteorological tower in Southwest Spain, Radiat Meas, 47, 149-162, doi:10.1016/j.radmeas.2011.11.006.
  • - Heue, K. P., Brenninkmeijer, C. A. M., Wagner, T., Mies, K., Dix, B., Frieβ, U., Martinsson, B., Slemr, F., and Van Velthoven, P., 2010: A comparison of DOAS observations by the CARIBIC aircraft and the GOME-2 satellite of the 2008 Kasatochi volcanic SO2 plume, Atmos Chem Phys Discuss, 10, 523–558, doi:10.5194/acpd-10-523-2010.
  • - Oncley, S. P., Friehe, C. A., Larue, J. C., Businger, J. A., Itsweire, E. C., and Chang, S. S., 1996: Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions, J Atmos Sci, 53, 1029–1044, doi:10.1175/1520-0469(1996)053<1029:SLFPAT>2.0.CO;2.
  • - Sinha, V., Williams, J., Diesch, J. M., Drewnick, F., Martinez, M., Harder, H., Regelin, E., Kubistin, D., Bozem, H., Hosaynali-Beygi, Z., Fischer, H., Andrés-Hernández, M. D., Kartal, D., Adame, J. A., and Lelieveld, J., 2012: Constraints on instantaneous ozone production rates and regimes during DOMINO derived using in-situ OH reactivity measurements, Atmos Chem Phys, 12, 7269–7283, doi:10.5194/acp-12-7269-2012.
  • - Song, W., Williams, J., Yassaa, N., Martinez, M., Adame, J. A., Hidalgo, P., Bozem, H., and Lelieveld, J., 2011: Winter and summer characterization of biogenic enantiomeric monoterpenes and anthropogenic BTEX Compounds at a Mediterranean Stone Pine forest site, J Atmos Chem, 68, 233–250, doi:10.1007/s10874-012-9219-4.
  • - Stull, R. B., 1988: An introduction to Boundary layer meteorology, Kluwer Academic Publishers, 666 pp.
  • - Vindel, J. M., Yagüe, C., and Redondo, J. M., 2008: Structure function analysis and intermittency in the atmospheric boundary layer, Nonlinear Process Geophys, 15, 915–929, doi:10.5194/npg-15-915-2008.
  • - Wehner, B., Siebert, H., Ansmann, A., Ditas, F., Siefert, P., Stratmann, F., Wiedensohler, A., Apituley, A., Shaw, R. A., Manninen, H. E., and Kulmala, M., 2010: Observations of turbulence induced new particle formation in the residual layer, Atmos Chem Phys Discuss, 10, 327–360, doi:10.5194/acpd-10-327-2010.
  • - Zieger, P., Weingartner, E., Henzing, J., Moerman, M., Leeuw, G. D., Mikkilä, J., Ehn, M., Petäkä, T., Clémer, K., Van Roozendael, M. V., Yilmaz, S., Friess, U., Irie, H., Wagner, T., Shaiganfar, R., Beirle, S., Apituley, A., Wilson, K., and Baltensperger, U., 2010: Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw, Atmos Chem Phys Discuss, 10, 29 683–29 734, doi:10.5194/acpd-10-29683-2010.


Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 Unported License


Indexed in Scopus, Thomson-Reuters Emerging Sources Citation Index (ESCI), Scientific Commons, Latindex, Google Scholar, DOAJ, ICYT (CSIC)

Partially funded through grants CGL2007-29820-E/CLI, CGL2008-02804-E/, CGL2009-07417-E and CGL2011-14046-E of the Spanish Ministry of Science and Innovation