NWC SAF convective precipitation product from MSG: A new day-time method based on cloud top physical properties

DOI: 10.3369/tethys.2015.12.01

Tethys no. 12 pp.: 3 - 11


Several precipitation products use radiances and reflectances obtained from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) to estimate convective precipitation. The direct use of these physical quantities in precipitation algorithms is known to generate an overestimation of the precipitation area and an underestimation of the rainfall rates. In order to extenuate these issues, the most recent Satellite Application Facility on Support to Nowcasting & Very Short Range Forecasting (NWC SAF/MSG) software package (version 2013) includes a new day-time algorithm that takes advantage of advances in cloud microphysics estimation, namely a better knowledge of Effective Radius (Reff ), Cloud Optical Thickness (COT) and Water Phase. The improved algorithm, known as Convective Rainfall Rate from Cloud Physical Properties (CRPh), uses such Cloud Top Physical Properties (CPP) to estimate rainfall rates from convective clouds on a SEVIRI pixel basis (about 3 km at nadir). This paper presents the novelties of the new algorithm and provides both a comparison of the product with the previous versions in the NWC SAF/MSG software package, and a validation with independent ground radar data from the Spanish Radar Network operated by AEMET. Results obtained over 46 storms suggest that the CRPh provides more precise estimates than the previous algorithm, thus being more suitable for a number of quantitative applications.


  • - Derrien, M., 2013: Algorithm Theoretical Basis Document for “Cloud Products” (CMa-PGE01 v3.2, CT-PGE02 v2.2 & CTTHPGE03 v2.2), Available at www.nwcsaf.org, 87 pgs.
  • - Gutiérrez, J. M. and Aguado, F., 2006: Quality image for the Spanish National Radar Composition, Proceedings of the 4th European Conference on Radar in Meteorology and Hydrology, Barcelona, 18-22 September 2006.
  • - Hong, Y., Hsu, K. L., Sorooshian, S. and Gao, X., 2004: Precipitation Estimation from Remotely Sensed Imagery using Artificial Neural Network-Cloud Classification System, J Appl Meteorol, 43, 1834–1853, doi: 10.1175/JAM2173.1.
  • - Jansà, A., Campins, J., Picornell, M. A., and Guijarro, J. A., 2014: Heavy rain and strong wind events over Spain during HyMeX SOP1, Tethys, 11, 25–38, doi: 10.3369/tethys.2014.11.03.
  • - Joyce, R., Janowiak, J., Arkin, P., and Xie, P., 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution, J Hydrometeor, 5, 487–503, doi: 10.1175/1525-7541(2004)005%3C0487:CAMTPG%3E2.0.CO;2.
  • - Kidd, C., 1998: On rainfall retrieval using polarization-corrected temperatures, Int J Remote Sens, 19, 981–996, doi: 10.1080/014311698215829.
  • - Knap, W. H., Stammes, P., and Koelemeijer, R. B. A., 2000: Discriminating between water and ice clouds using near-infrared AVIRIS measurements, Proceedings of the 9th AVIRIS Earth Science and Applications Workshop, NASA Jet Propulsion Laboratory, Pasadena, USA, 23-25 February 2000.
  • - Kummerow, C., Hong, Y., Olson, W., and Yang, S., 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors, J Appl Meteorol, 40, 1801–1820, doi: 10.1175/1520-0450(2001)040%3C1801:TEOTGP%3E2.0.CO;2.
  • - Lensky, I. and Rosenfeld, D., 2006: The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius, Atmos Chem Phys, 6, 2887–2894, doi: 10.5194/acp-6-2887-2006.
  • - Levizzani, V., Schmetz, J., Lutz, H. J., Kerkmann, J., Alberoni, P. P., and Cervino, M., 2001: Precipitation estimations from geostationary orbit and prospects for METEOSAT Second Generation, Meteorol Appl, 8, 23–41, doi: 10.1017/S1350482701001037.
  • - Marcos, C. and Rodríguez, A., 2013a: Validation Report for “Convective Rainfall Rate” (CRR-PGE05 v4.0), Available at www.nwcsaf.org, 21 pgs.
  • - Marcos, C. and Rodríguez, A., 2013b: Algorithm Theoretical Basis Document for “Precipitation products from Cloud Physical Properties” (PPh-PGE14: PCPh v1.0 & CRPh v1.0), Available at www.nwcsaf.org, 40 pgs.
  • - Marcos, C. and Rodríguez, A., 2013c: Validation Report for “Precipitation products from Cloud Physical Properties” (PPh-PGE14: PCPh v1.0 & CRPh v1.0), Available at www.nwcsaf.org, 26 pgs.
  • - Miller, S. W., Arkin, P. A., and Joyce, R., 2001: A combined microwave/infrared rain rate algorithm, Int J Remote Sens, 22, 3285–3307, doi: 10.1080/01431160152609155.
  • - Nakajima, T. and King, M., 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory, J Atmos Sci, 42, 1878–1893, doi: 10.1175/1520-0469(1990)047%3C1878:DOTOTA%3E2.0.CO;2.
  • - Nauss, T. and Kokhanovsky, A. A., 2007: Advances in Geosciences Assignment of rainfall confidence values using multispectral satellite data at mid-latitudes: first results, Advances in Geosciences, 10, 99–102.
  • - Rodríguez, A. and Marcos, C., 2013a: Product User Manual for the “Convective Rainfall Rate” (CRR - PGE05 v4.0), Available at www.nwcsaf.org, 28 pgs.
  • - Rodríguez, A. and Marcos, C., 2013b: Algorithm Theoretical Basis Document for “Convective Rainfall Rate” (CRR-PGE05 v4.0), Available at www.nwcsaf.org, 36 pgs.
  • - Roebeling, R. and Holleman, I., 2009: SEVIRI rainfall retrieval and validation using weather radar observations, J Geophys Res, 114, D21 202, doi: 10.1029/2009JD012102.
  • - Roebeling, R., Feijt, A. J., and Stammes, P., 2006: Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17, J Geophys Res, 111, D20 210, doi: 10.1029/2005JD006990.
  • - Rosenfeld, D. and Gutman, G., 1994: Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data, Atmos Res, 34, 259–283, doi: 10.1016/0169-8095(94)90096-5.
  • - Smith, E. A., Lamm, J. E., Adler, R., Alishouse, J., Aonashi, K., Barrett, E., Bauer, P., Berg, W., Chang, A., Ferraro, R., Ferriday, J., Goodman, S., Grody, N., Kidd, C., Kniveton, D., Kummerow, C., Liu, G., Marzano, F., Mugnai, A., Olson, W., Petty, G., Shibata, A., Spencer, R.,Wentz, F.,Wilheit, T., and Zipser, E., 1998: Results of WetNet PIP-2 project, J Atmos Sci, 55, 1483–1536, doi: 10.1175/1520-0469(1998)055%3C1483:ROWPP%3E2.0.CO;2.
  • - Tapiador, F. J., Kidd, C., Levizzani, V., and Marzano, F. S., 2004: A maximum entropy approach to satellite quantitative precipitation estimation (QPE), Int J Remote Sens, 25, 4629–4639, doi: 10.1080/01431160410001710000.
  • - Tapiador, F. J., Turk, J., Petersen, W., Hou, A., García-Ortega, E., Machado, L., Angelis, C., Salio, P., Kidd, C., Huffman, G., and Castro, M., 2012: Global precipitation measurement: Methods, datasets and applications, Atmos Res, 104-105, 70–97, doi: 10.1016/j.atmosres.2011.10.021.
  • - Thoss, A., 2008: Validation Report for “Precipitating Clouds” (PCPGE04 v1.4), Available at www.nwcsaf.org, 29 pgs.
  • - Thoss, A., 2013a: Product User Manual for SAFNWC/MSG “Precipitating Cloud” (PC-PGE04 v1.5), Available at www.nwcsaf.org, 18 pgs.
  • - Thoss, A., 2013b: Algorithm Theoretical Basis Document for SAFNWC/MSG “Precipitating Cloud” (PC-PGE04 v1.5), Available at www.nwcsaf.org, 21 pgs.


The Best Letter of the Year 2016

Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 Unported License

Indexed in Scopus, Thomson-Reuters Emerging Sources Citation Index (ESCI), Scientific Commons, Latindex, Google Scholar, DOAJ, ICYT (CSIC)

Partially funded through grants CGL2007-29820-E/CLI, CGL2008-02804-E/, CGL2009-07417-E and CGL2011-14046-E of the Spanish Ministry of Science and Innovation