A discussion about the role of shortwave schemes on real WRF-ARW simulations. Two case studies: cloudless and cloudy sky

DOI: 10.3369/tethys.2015.12.02

Tethys no. 12 pp.: 13 - 31

Abstract

A wide range of approaches for radiative transfer computations leads to several parameterizations. Differences in these approximations bring about distinct results for the radiative fluxes, even under the same atmospheric conditions. Since the transfer of solar and terrestrial radiation represents the primordial physical process that shapes the atmospheric circulation, these deviations must have an impact on the numerical weather prediction (NWP) model performance.
In this paper, an analysis of the role of shortwave schemes on the Weather Research and Forecasting (WRF-ARW) model is presented. The study compares the effect of four parameterizations (Dudhia, New Goddard, CAM and RRTMG) in two cases: i) cloudless and ii) cloudy sky situations for a domain defined over Catalonia (northeast of the Iberian Peninsula). We analyze the direct and the indirect feedback between the dynamical aspects and the physical parameterizations driven by changes in the radiative transfer equation
computation. The cumulative effect of these variations are studied through three simulation windows: current day (0-23 h), day-ahead (24-47 h) and two days ahead (48-71 h).
These analyses are focused on several NWP model fields. From the most directly related to shortwave schemes such as global horizontal irradiance or the heating rate profile, to apparently secondary outcomes such as wind speed or cloud composition among others. The differences observed between model runs using different solar parameterizations increase with the simulation horizon, being more important in the cloudy scenario than in the cloudless sky.

References

  • - Chandrasekhar, S., 1960: Radiative transfer, Dover Publications.
  • - Chou, M. D. and Suarez, M. J., 1994: An efficient thermal infrared radiation parameterization for use in general circulation models, NASA Tech. Memo, 104606, 85.
  • - Chou, M. D. and Suarez, M. J., 1999: A solar radiation parameterization for atmospheric studies, NASA Tech. Memo, 104606, 40.
  • - Chou, M. D., Arking, A., Otterman, J., and Ridgway, W. L.,1995: The effect of clouds on atmospheric absorption of solarradiation, Geophys. Res. Lett., 22, 1885–1888, doi:dx.doi.org/10.1029/95gl01350.
  • - Chou, M. D., Suarez, M. J., Liang, X. Z., and Yan, M. M. H., 2001:A thermal infrared radiation parameterization for atmospheric studies, NASA Tech. Memo, 104606, 56, doi:dopu.cs.auc.dk, available online at ftp://climate.gsfc.nasa.gov/chou/clirad lw/.
  • - Collins,W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Kiehl, J. T., Briegleb, B., Bitz, C., Lin, S., and et al., 2004: Description of the NCAR community atmosphere model (CAM 3.0), NCAR Tech., nCAR/TN-464+ STR.
  • - Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., and et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, doi:dx.doi.org/10.1002/qj.828.
  • - Fels, S. B. and Schwarzkopf, M., 1981: An efficient, accurate algorithm for calculating CO2 15 m band cooling rates, Journal of Geophysical Research: Oceans (1978-2012), 86, 1205–1232, doi:dx.doi.org/10.1029/jc086ic02p01205.
  • - Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B., 2005: Fully coupled online chemistry within the WRF mode, Atmospheric Environment, 39, 6957–6975, doi:dx.doi.org/10.1016/j.atmosenv.2005.04.027.
  • - Gu, Y., Liou, K., Ou, S., and Fovell, R., 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution, J. Geophys. Res-Atmos. (1984-2012), 116, doi:dx.doi.org/10.1029/2010jd014574.
  • - Holton, J., 2004: An Introduction to Dynamic Meteorology, no. v. 1 in An Introduction to Dynamic Meteorology, Elsevier Academic Press.
  • - Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D., 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, Journal of Geophysical Research: Atmospheres (1984–2012), 113. doi: dx.doi.org/10.1029/2008jd009944.
  • - Liou, K. N., 1980: An introduction to atmospheric radiation, vol. 84, International Geophysics Series.
  • - Lu, F., Song, J., Cao, X., and X.Zhu, 2012: CPU/GPU computing for long-wave radiation physics on large GPU clusters, Computers & Geosciences, 41, doi:dx.doi.org/10.1016/j.cageo.2011.08.007.
  • - Mercader, J., Codina, B., Sairouni, A., and Cunillera, J., 2010: Resultados del modelo meteorológico WRF-ARW sobre Cataluña, utilizando diferentes parametrizaciones de la convección y la microfísica de nubes, Tethys, 7, 77–89, doi:dx.doi.org/10.3369/tethys.2010.7.07.
  • - Mielikainen, J., Huang, B., Huang, H., and Goldberg, M. D., 2012: GPU acceleration of the updated Goddard shortwave radiation scheme in the weather research and forecasting (WRF) model, Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 5, 555–562, doi:dx.doi.org/10.1109/jstars.2012.2186119.
  • - Montornès, A., Codina, B., and Zack, J. W., 2015: Analysis of the ozone profile specifications in the WRF-ARW model and their impact on the simulation of direct solar radiation, Atmos. Chem. Phys., 15, 2693–2707, doi:dx.doi.org/10.5194/acp-15-2693-2015, http://www.atmos--chem--phys.net/15/2693/2015/.
  • - Pincus, R., Barker, H. W., and Morcrette, J. J., 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields, J. Geophys. Res., 108, doi:dx.doi.org/10.1029/2002jd003322.
  • - Ruestsch, G., Phillips, E., and Fatica, M., 2010: GPU acceleration of the long-wave rapid radiative transfer model in WRF using CUDA Fortran, Many-Core and Reconfigurable Supercomputing Conference, p. doi:dx.doi.org/10.1117/12.203145.
  • - Ruiz-Arias, J. A., Dudhia, J., Santos-Alamillos, F. J., and Pozo-Vazquez, D., 2013: Surface clear-sky shortwave radiative closure intercomparisons in the Weather Research and Forecasting model, J. Geophys. Res.: Atmospheres, 118, 9901–9913, doi:dx.doi.org/10.1002/jgrd.50778.
  • - Ruiz-Arias, J. A., Dudhia, J., and Gueymard, C. A., 2014: A simple parameterization of the short-wave aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical weather model, Geoscientific Model Development, 7, 1159–1174, doi:dx.doi.org/10.5194/gmdd-7-593-2014, http://www.geosci--model--dev.net/7/1159/2014/.
  • - Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X. Y., Wang, W., and Powers, J. G., 2008: A description of the Advanced Research WRF version 3, NCAR Tech, p. 113, note NCAR/TN-4751STR.
  • - Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., and Dutton, E. G., 2005: From dimming to brightening: Decadal changes in solar radiation at Earth’s surface, Science, 308, 847–850, doi:dx.doi.org/10.1126/science.1103215.
  • - Zdunkowski, W. G., Welch, R. M., and Korb, G., 1980: An investigation of the structure of typical two-stream-methods for the calculation of solar fluxes and heating rates in clouds, Beitr. Phys. Atmosph., 53, 147–166.


Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 Unported License


Indexed in Scopus, Thomson-Reuters Emerging Sources Citation Index (ESCI), Scientific Commons, Latindex, Google Scholar, DOAJ, ICYT (CSIC)

Partially funded through grants CGL2007-29820-E/CLI, CGL2008-02804-E/, CGL2009-07417-E and CGL2011-14046-E of the Spanish Ministry of Science and Innovation