DOI: 10.3369/tethys.2018.15.15

Tethys no. 15 pp.: 3 - 17


This study uses the Weather Research and Forecasting model (WRF) and the three-dimensional variational data assimilation system (WRF 3DVAR), in cold and warm starts, with the aim of finding out an appropriate nowcasting method that would have improved the forecast of precipitation maxima in the mesoscale convective system that occurred in Catalonia (NE Spain) on March 21, 2012 at 20 UTC. We assimilated radar data using different configurations, qualitatively verifying the increase of rainwater produced by the assimilation of reflectivity.

Key words: WRF, 3DVAR, radar, precipitation

DOI: 10.3369/tethys.2015.12.02

Tethys no. 12 pp.: 13 - 31


A wide range of approaches for radiative transfer computations leads to several parameterizations. Differences in these approximations bring about distinct results for the radiative fluxes, even under the same atmospheric conditions. Since the transfer of solar and terrestrial radiation represents the primordial physical process that shapes the atmospheric circulation, these deviations must have an impact on the numerical weather prediction (NWP) model performance.


  • - Chandrasekhar, S., 1960: Radiative transfer, Dover Publications.
  • - Chou, M. D. and Suarez, M. J., 1994: An efficient thermal infrared radiation parameterization for use in general circulation models, NASA Tech. Memo, 104606, 85.
  • - Chou, M. D. and Suarez, M. J., 1999: A solar radiation parameterization for atmospheric studies, NASA Tech. Memo, 104606, 40.
  • - Chou, M. D., Arking, A., Otterman, J., and Ridgway, W. L.,1995: The effect of clouds on atmospheric absorption of solarradiation, Geophys. Res. Lett., 22, 1885–1888, doi:dx.doi.org/10.1029/95gl01350.
  • - Chou, M. D., Suarez, M. J., Liang, X. Z., and Yan, M. M. H., 2001:A thermal infrared radiation parameterization for atmospheric studies, NASA Tech. Memo, 104606, 56, doi:dopu.cs.auc.dk, available online at ftp://climate.gsfc.nasa.gov/chou/clirad lw/.
  • - Collins,W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Kiehl, J. T., Briegleb, B., Bitz, C., Lin, S., and et al., 2004: Description of the NCAR community atmosphere model (CAM 3.0), NCAR Tech., nCAR/TN-464+ STR.
  • - Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., and et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, doi:dx.doi.org/10.1002/qj.828.
  • - Fels, S. B. and Schwarzkopf, M., 1981: An efficient, accurate algorithm for calculating CO2 15 m band cooling rates, Journal of Geophysical Research: Oceans (1978-2012), 86, 1205–1232, doi:dx.doi.org/10.1029/jc086ic02p01205.
  • - Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B., 2005: Fully coupled online chemistry within the WRF mode, Atmospheric Environment, 39, 6957–6975, doi:dx.doi.org/10.1016/j.atmosenv.2005.04.027.
  • - Gu, Y., Liou, K., Ou, S., and Fovell, R., 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution, J. Geophys. Res-Atmos. (1984-2012), 116, doi:dx.doi.org/10.1029/2010jd014574.
  • - Holton, J., 2004: An Introduction to Dynamic Meteorology, no. v. 1 in An Introduction to Dynamic Meteorology, Elsevier Academic Press.
  • - Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D., 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, Journal of Geophysical Research: Atmospheres (1984–2012), 113. doi: dx.doi.org/10.1029/2008jd009944.
  • - Liou, K. N., 1980: An introduction to atmospheric radiation, vol. 84, International Geophysics Series.
  • - Lu, F., Song, J., Cao, X., and X.Zhu, 2012: CPU/GPU computing for long-wave radiation physics on large GPU clusters, Computers & Geosciences, 41, doi:dx.doi.org/10.1016/j.cageo.2011.08.007.
  • - Mercader, J., Codina, B., Sairouni, A., and Cunillera, J., 2010: Resultados del modelo meteorológico WRF-ARW sobre Cataluña, utilizando diferentes parametrizaciones de la convección y la microfísica de nubes, Tethys, 7, 77–89, doi:dx.doi.org/10.3369/tethys.2010.7.07.
  • - Mielikainen, J., Huang, B., Huang, H., and Goldberg, M. D., 2012: GPU acceleration of the updated Goddard shortwave radiation scheme in the weather research and forecasting (WRF) model, Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 5, 555–562, doi:dx.doi.org/10.1109/jstars.2012.2186119.
  • - Montornès, A., Codina, B., and Zack, J. W., 2015: Analysis of the ozone profile specifications in the WRF-ARW model and their impact on the simulation of direct solar radiation, Atmos. Chem. Phys., 15, 2693–2707, doi:dx.doi.org/10.5194/acp-15-2693-2015, http://www.atmos--chem--phys.net/15/2693/2015/.
  • - Pincus, R., Barker, H. W., and Morcrette, J. J., 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields, J. Geophys. Res., 108, doi:dx.doi.org/10.1029/2002jd003322.
  • - Ruestsch, G., Phillips, E., and Fatica, M., 2010: GPU acceleration of the long-wave rapid radiative transfer model in WRF using CUDA Fortran, Many-Core and Reconfigurable Supercomputing Conference, p. doi:dx.doi.org/10.1117/12.203145.
  • - Ruiz-Arias, J. A., Dudhia, J., Santos-Alamillos, F. J., and Pozo-Vazquez, D., 2013: Surface clear-sky shortwave radiative closure intercomparisons in the Weather Research and Forecasting model, J. Geophys. Res.: Atmospheres, 118, 9901–9913, doi:dx.doi.org/10.1002/jgrd.50778.
  • - Ruiz-Arias, J. A., Dudhia, J., and Gueymard, C. A., 2014: A simple parameterization of the short-wave aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical weather model, Geoscientific Model Development, 7, 1159–1174, doi:dx.doi.org/10.5194/gmdd-7-593-2014, http://www.geosci--model--dev.net/7/1159/2014/.
  • - Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X. Y., Wang, W., and Powers, J. G., 2008: A description of the Advanced Research WRF version 3, NCAR Tech, p. 113, note NCAR/TN-4751STR.
  • - Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., and Dutton, E. G., 2005: From dimming to brightening: Decadal changes in solar radiation at Earth’s surface, Science, 308, 847–850, doi:dx.doi.org/10.1126/science.1103215.
  • - Zdunkowski, W. G., Welch, R. M., and Korb, G., 1980: An investigation of the structure of typical two-stream-methods for the calculation of solar fluxes and heating rates in clouds, Beitr. Phys. Atmosph., 53, 147–166.

DOI: 10.3369/tethys.2010.7.07

Tethys no. 7 pp.: 75 - 86


The meteorological model WRF-ARW (Weather Research and Forecasting - Advanced Research WRF) is a new generation model that has a worldwide growing community of users. In the framework of a project that studies the feasibility of implementing it operationally at the Meteorological Service of Catalonia, a verification of the forecasts produced by the model in several cases of precipitation observed over Catalonia has been carried out.


  • - Borge, R., Alexandrov, V., del Vas, J. J., Lumbreras, J., and Rodríguez, E., 2008: A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula, Atmos Environ, 42, 8560–8574, doi: 10.1016/j.atmosenv.2008.08.032.
  • - Davis, C. A., Brown, B., and Bullock, R., 2006: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems, Mon Wea Rev, 134, 1785–1795, doi: 10.1175/MWR3146.1.
  • - Ebert, E. E., 2008: Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework, Meteorol Appl, 15, 51–64, doi: 10.1002/met.25.
  • - Gallus, W. A. and Bresch, J. F., 2006: Comparison of Impacts of WRF Dynamic Core, Physics Package, and Initial Conditions on Warm Season Rainfall Forecasts, Mon Wea Rev, 134, 2632–2641, doi: 10.1175/MWR3198.1.
  • - Hong, S.-Y., Noh, Y., and Dudhia, J., 2006: A new vertical diffusion package with an explcit treatment of entrainment processes, Mon Wea Rev, 134, 2318–2341, doi:10.1175/MWR3199.1.
  • - Jankov, I., Gallus, W. A., Segal, M., and Koch, S. E., 2007: Influence of Initial Conditions on the WRF-ARW Model QPF Response to Physical Parameterization Changes, Wea Forecasting, 22, 501–519, doi: 10.1175/WAF998.1.
  • - Kain, J., Weiss, S., Baldwin, M., Carbin, G., Bright, D., Levit, J., and Hart, J., 2005: Evaluating high-resolution configurations of the WRF model that are used to forecast severe convective weather: The 2005 SPC/NSSL spring experiment, Preprints, 21st Conf. on Weather Analysis and Forecasting, Washington, D.C., Amer. Meteor. Soc., 2A.5, http://ams.confex.com/ams/pdfpapers/94843.pdf.
  • - Kain, J. S., Weiss, S. J., Levit, J. J., Baldwin, M. E., and Bright, D. R., 2006: Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004, Wea Forecasting, 21, 167–181, doi: 10.1175/WAF906.1.
  • - Klemp, J. B., 2006: Advances in the WRF model for convectionresolving forecasting, Advances in Geosciences, 7, 25–29.
  • - Llasat, M. C., 2001: An objective classification of rainfall events on the basis of their convective features: application to rainfall intensity in the northeast of Spain, Int J Climatol, 21, 1385–1400, doi: 10.1002/joc.692.
  • - Mateo, J., Ballart, D., Brucet, C., Aran, M., and Bech, J., 2009: A study of a heavy rainfall event and a tornado outbreak during the passage of a squall line over Catalonia, Atmos Res, 93, 131–146, doi:10.1016/j.atmosres.2008.09.030.
  • - Roberts, N. M. and Lean, H. W., 2008: Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events, Mon Wea Rev, 136, 78–97, doi: 10.1175/2007MWR2123.1.
  • - Sairouni, A., Moré, J., Toda, J., Miró, J. R., Aran, M., and Cunillera, J., 2007: Verificació dels models de mesoescala operatius al Servei Meteorològic de Catalunya, Notes d’estudi del Servei Meteorològic de Catalunya, n. 71, 78 pp. (ISBN 978-84-393-7590-6).
  • - Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G., 2005: A description of the Advanced Research WRF Version 2, NCAR Tech Notes-468+STR, (rev. 2007).
  • - Thompson, G., Rasmussen, R. M., and Manning, K., 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis, Mon Wea Rev, 132, 519–542, doi: 10.1175/1520–0493(2004)132<0519:EFOWPU>2.0.CO;2.
  • - Wang, W., Barker, D., Bray, J., Bruyère, C., Duda, M., Dudhia, J., Gill, D., and Michalakes, J., 2007: User’s Guide for Advanced Research WRF (ARW) Modeling System Version 2.2, Mesoscale and Microscale Meteorology Division - National Center for Atmospheric Research (MMM-NCAR).
  • - Weisman, M. L., Davis, C.,Wang,W., Manning, K.W., and Klemp, J. B., 2008: Experiences with 0-36-h Explicit Convective Forecasts with the WRF-ARW Model, Wea Forecasting, 23, 407–437, doi: 10.1175/2007WAF2007 005.1.
  • - Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction, Academic Press, 467 pp.
  • - Wisse, J. S. P. and Vilà-Guerau de Arellano, J., 2004: Analysis of the role of the planetary boundary layer schemes during a severe convective storm, Ann Geophys, 22, 1861–1874, doi:10.5194/angeo–22–1861–2004.

Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 Unported License

Indexed in Scopus, Thomson-Reuters Emerging Sources Citation Index (ESCI), Scientific Commons, Latindex, Google Scholar, DOAJ, ICYT (CSIC)

Partially funded through grants CGL2007-29820-E/CLI, CGL2008-02804-E/, CGL2009-07417-E and CGL2011-14046-E of the Spanish Ministry of Science and Innovation

Syndicate content