Comparison of algorithms to retrieve Land Surface Temperature from LANDSAT-7 ETM+ IR data in the Basilicata Ionian band

DOI: 10.3369/tethys.2012.9.03

Tethys no. 9 pp.: 25 - 34

Abstract

Land Surface Temperature (LST) is an extremely important parameter that controls the exchange of longwave radiation and sensible heat flux between the Earth’s surface and the atmosphere. Therefore knowledge of LST is essential for a range of issues and themes in Earth sciences central to hydrology, climatology and global environmental change. In particular, it plays a main role in estimating hydrological variables, such as evapotranspiration. However, because of the extreme heterogeneity of most natural land surfaces, LST is a difficult parameter to estimate and to validate. In this study, two models by Qin et al. and Jiménez-Muñoz and Sobrino were applied and compared for the evaluation of the LST on the Basilicata region (Southern Italy). These models were proposed in literature as alternatives to the application of the Radiative Transfer Equation (RTE) in order to overcome some difficulties in obtaining data from radio sounding and in schematizing mass and energy exchange processes in the atmosphere. Two images from Landsat-7 ETM+ (9th August, 1999; 14th June, 2002), covering the whole Basilicata region, were processed to obtain maps of LST. The required meteorological variables, air temperature and relative humidity, global solar radiation and wind speed, were obtained by interpolating data from a network of agro-meteorological stations distributed within the region. The variability of the LSTs retrieved was investigated with respect to different land use types characterized from the CORINE Land Cover map. Then a comparison was made between the LST retrieved by the application of the Qin et al. and the Jiménez-Muñoz and Sobrino models and the in situ measurements of surface temperature taken at ALSIA (Agenzia Lucana di Sviluppo e di Innovazione in Agricoltura) weather stations located in the Ionian band of the Basilicata region. The results show (in agreement with previous works) that the Jiménez-Muñoz and Sobrino model, in this case, is better able to approximate the measured data than the Qin et al. model, also using Landsat-7 ETM+ images and in a different context, such as that of the Lucan Ionian band.

References

  • - APAT, 2005: The project IMAGE and CORINE Land Cover 2000 in Italy, Final report, april 2005.
  • - Becker, F. and Li, Z. L., 1990: Temperature independent spectral indices in thermal infrared bands, Remote Sens Environ, 32, 17–33, doi:10.1016/0034-4257(90)90095-4.
  • - Carlson, T. N. and Ripley, D. A., 1997: On the relation between NDVI, fractional vegetation cover, and leaf area index, Remote Sens Environ, 62, 241–252, doi:10.1016/S0034-4257(97)00104-1.
  • - Chavez, P. S., 1996: Image-based atmospheric correction-revisited and improved, Photogramm Eng Remote Sens, 62, 1025–1036.
  • - Coll, C., Caselles, V., and Galve, J. M., 2005: Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data, Remote Sens Environ, 97, 288–300, doi:10.1016/j.rse.2005.05.007.
  • - Cooper, D. I. and Asrar, G., 1989: Evaluating atmospheric correction models for retrieving surface temperature from AVHRR over a tallgrass prairie, Remote Sens Environ, 27, 93–102, doi:10.1016/0034-4257(89)90040-0.
  • - Cristóbal, J., Jiménez-Muñoz, J. C., Sobrino, J. A., Ninyerola, M., and Pons, X., 2009: Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature, J Geophys Res, 114, D08 103, doi:10.1029/2008JD010616.
  • - Dousset, B. and Gourmelon, F., 2003: Satellite multi-sensor data analysis of urban surface temperatures and landcover, ISPRS-J Photogramm Remote Sens, 58, 43–54, doi:10.1016/S0924-2716(03)00016-9.
  • - Gillespie, A. R., Rokugawa, S., Hook, S., Matsunaga, T., and Kahle, A. B., 1998: A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, IEEE Trans Geosci Remote Sensing, 36, 1113–1126, doi:10.1109/36.700995.
  • - Iqbal, M., 1983: An introduction to solar radiation, Academic Press, New York.
  • - Jiménez-Muñoz, J. C. and Sobrino, J. A., 2003: A generalized single channel method for retrieving land surface temperature from remote sensing data, J Geophys Res, 108, doi:10.1029/2003JD003480.
  • - Jiménez-Muñoz, J. C., Cristóbal, J., Sobrino, J. A., Sòria, G., Ninyerola, M., and Pons, X., 2009: Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data, IEEE Trans Geosci Remote Sensing, 47, 339–349, doi:10.1109/TGRS.2008.2007125.
  • - Mallick, J., Kant, Y., and Bharath, B. D., 2008: Estimation of land surface temperature over Delhi using Landsat-7 ETM+, J Ind Geophys Union, 12, 131–140.
  • - Norman, J. M., Chen, J. L., and Goel, N. S., 1990: Thermal emissivity and infrared temperature dependence of plant canopy architecture and view angle, Proc. 10th Ann. Inter. Geoscience Remote Sensing Symp., IEEE, 445 Hoes Lane, Piscataway, NJ 08854, vol. III, pp. 1747-1750.
  • - Prata, A. J., 2002: Land surface temperature measurement from space: Global surface temperature simulations for the AATSR, Technical report, cSIRO 15 pp.
  • - Qin, Z., Karnieli, A., and Berliner, P., 2001: A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region, Int J Remote Sens, 22, 3719–3746, doi:10.1080/01431160010006971.
  • - Running, S. W., Justice, C., and Salomonson, V., 1994: Terrestrial remote sensing science and algorithms planned for EOS/MODIS, Int J Remote Sens, 15, 2620–3587, doi:10.1080/01431169408954346.
  • - Sobrino, J. A., 1989: Desarrollo de un modelo teórico para implementar la medida de la temperatura realizada mediante teledetección. Aplicación a un campo de naranjos, PhD dissertation, University of Valencia, Valencia, 170 pp.
  • - Sobrino, J. A. and Raissouni, N., 2000: Toward remote sensing methods for land cover dynamic monitoring. Application to Morocco, Int J Remote Sens, 21, 353–366, doi:10.1080/014311600210876.
  • - Sobrino, J. A., Caselles, V., and Becker, F., 1990: Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard, ISPRS-J Photogramm Remote Sens, 44, 343–354, doi:10.1016/0924-2716(90)90077-O.
  • - Sobrino, J. A., Jiménez-Muñoz, J. C., and Leonardo, P., 2004: Land surface temperature retrieval from LANDSAT TM 5, Remote Sens Environ, 90, 434–440, doi:10.1016/j.rse.2004.02.003.
  • - Sobrino, J. A., Jiménez-Muñoz, J. C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., and Martínez, P., 2008: Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors, IEEE Trans Geosci Remote Sensing, 46, 316–327, doi:10.1109/TGRS.2007.904834.
  • - Sun, Q., Tan, J., and Xu, Y., 2010: An ERDAS image processing method for retrieving LST and describing urban heat evolution: a case study in the Pearl River Delta Region in South China, Environ Earth Sci, 59, 1047–1055, doi:10.1007/s12665-009-0096-3.
  • - Valor, E. and Caselles, V., 1996: Mapping land surface emissivity from NDVI: application to European, African and South American areas, Remote Sens Environ, 57, 167–184, doi:10.1016/0034-4257(96)00039-9.
  • - Van de Griend, A. A. and Owe, M., 1993: On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces, Int J Remote Sens, 14, 1119–1131, doi:10.1080/01431169308904400.
  • - Wan, Z. and Snyder, W., 1996: MODIS land-surface temperature algorithm theoretical basis document, LST ATBD, version 3.2.
  • - Weng, Q., Lu, D., and Schubring, J., 2004: Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies, Remote Sens Environ, 89, 467–483, doi:10.1016/j.rse.2003.11.005.
  • - Wukelic, G. E., Gibbons, D. E., Martucci, L. M., and Foote, H. P., 1989: Radiometric calibration of Landsat Thematic Mapper Thermal Band, Remote Sens Environ, 28, 339–347, doi:10.1016/0034-4257(89)90125-9.
  • - Yang, J. S. and Wang, Y. Q., 2002: Estimation of land surface temperature using landsat-7 ETM+ thermal infrared and weather station data, Proceeding of Huangshan International Thermal Infrared Remote Sensing Workshop, Huangshan, Anhui, PR China, july 14-17, 2002, http://www.ltrs.uri.edu/research/LSTpage/paper4.doc.
  • - Zhang, J., Wang, Y., and Lib, Y., 2006: A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band6, Comput Geosci, 32, 1796–1805, doi:10.1016/j.cageo.2006.05.001.
  • - Zhang, J., Wang, Y., and Wang, Z., 2007: Change analysis of land surface temperature based on robust statistics in the estuarine area of Pearl River (China) from 1990 to 2000 by Landsat TM/ETM+ data, Int J Remote Sens, 28, 2383–2390, doi:10.1080/01431160701236811.


Award:

The Best Letter of the Year 2016



Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 Unported License


Indexed in Scopus, Thomson-Reuters Emerging Sources Citation Index (ESCI), Scientific Commons, Latindex, Google Scholar, DOAJ, ICYT (CSIC)

Partially funded through grants CGL2007-29820-E/CLI, CGL2008-02804-E/, CGL2009-07417-E and CGL2011-14046-E of the Spanish Ministry of Science and Innovation